Jan. 20th, 2007

synchcola: (heyoka "ok")
an integral

\begin{align*} \int_0^{\pi/2} {k' \sin x \over \sqrt{1 - k'^2 \sin^2 x}} \,dx &= \int_0^1 {k' \over \sqrt{k^2 + k'^2 x^2}} \, dx \\&= \mathop{\text{arcsinh}} (k'/k)x \big]_{x=0}^{x=1} \\&= \ln \bigg( {k' \over k} + {1\over k}\bigg) \end{align*}

(then i went shopping)

Profile

synchcola: (Default)
synchcola

October 2024

S M T W T F S
  12345
6789101112
13141516171819
202122 23242526
2728293031  

Page Summary

Style Credit

Expand Cut Tags

No cut tags
Page generated Aug. 22nd, 2025 08:51 pm
Powered by Dreamwidth Studios